GNSS Training for ITS Developers

Exploitation of EGNOS and EDAS for road applications
Table of Content

- Road Traffic Management – Main Issues
- EGNOS/EDAS and Road User Charging
- Increasing Road Safety
- Improving Fleet Management and public transport
- EGNOS/EDAS for driver assistance
Issue 1: Road Safety - Status

25845 people died on the roads of the European Union in 2014.

Source: European Commission
Issue 1 – Road Safety - Status

Percentage change in road deaths between 2010 and 2014 (Source: ETSC – June 2015)
Issue 1 – Road Safety - Status

Road death per million inhabitants in 2014
(Source ETSC)
Issue 2: Pollution - Status

Air pollution:

- Transport is one of the main sources of air pollution, for which evidence on direct effects on mortality as well as on respiratory and cardiovascular disease is firmly established.
- About 100,000 premature adult deaths attributable to air pollution occur each year in the WHO European Region. Emissions from road traffic account for a significant share of this burden.
- Some 40 million people in the 115 largest cities in the European Union (EU) are exposed to air exceeding WHO air quality guideline values for at least one pollutant.

Source: WHO, June 2015
Issue 2: Pollution – Most Polluted Cities

<table>
<thead>
<tr>
<th>Number of days of PM$_{10}$ exceedances of EU limit value of 50 µg/m3 (daily mean)</th>
<th>Number of days of O$_3$ exceedances of EU target value of 120 µg/m3 (maximum daily 8 hours mean)</th>
<th>NO$_x$ annual mean concentrations in µg/m3 (the EU limit value is 40 µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plovdiv, Bulgaria</td>
<td>208</td>
<td>Turin, Italy</td>
</tr>
<tr>
<td>Pleven, Bulgaria</td>
<td>185</td>
<td>Campobasso, Italy</td>
</tr>
<tr>
<td>Sofia, Bulgaria</td>
<td>176</td>
<td>Bologna, Italy</td>
</tr>
<tr>
<td>Krakow, Poland</td>
<td>152</td>
<td>Bergamo, Italy</td>
</tr>
<tr>
<td>Timisoara, Romania</td>
<td>136</td>
<td>Athens, Greece</td>
</tr>
<tr>
<td>Rybnik, Poland</td>
<td>122</td>
<td>Novara, Italy</td>
</tr>
<tr>
<td>Nowy Sacz, Poland</td>
<td>116</td>
<td>Cremona, Italy</td>
</tr>
<tr>
<td>Craiova, Romania</td>
<td>112</td>
<td>Brescia, Italy</td>
</tr>
<tr>
<td>Zabrze, Poland</td>
<td>108</td>
<td>Milan, Italy</td>
</tr>
<tr>
<td>Turin, Italy</td>
<td>106</td>
<td>Reggio nell Emilia, Italy</td>
</tr>
</tbody>
</table>
Issue 2: Pollution - Measurements

Nitrogen dioxide (NO_2)

NOISE

POLLUTION

TEMPERATURE
Issue 2: Pollution – CO₂ emission

Carbon Emission:

• Transport = fastest growing source of carbon emission (largest contributor to greenhouse effect and climate change)

• +20% net increase of greenhouse-gas emission in 10 years (source: WHO, June 2015)

• Indirect effects, such as the wide range anticipated from climate change, are becoming increasingly evident.
Issue 2: Pollution - Forecasts

- Transport accounts for over 30% of final energy consumption and about one fourth of CO2 emissions
- CO2 emissions from transport are projected to be 1% below their 2005 level by 2030 and roughly stabilise afterwards
- The share of CO2 emissions from transport would continue increasing, to 38% of the total by 2030 and almost 50% by 2050

(Source: PRIMES)
Issue 3: Congestion - Status

- Over the past 30 years, the number of car in EU doubled and the distances covered tripled.
- 10% of EU roads are congested on daily basis.
- Most congested countries (source: INRIX – June 2015):
 - Belgium
 - UK
 - The Netherlands
 The most congested local road links in Europe.
 Source: Transtools 2010
Issue 3: Congestion - Status

Congestion Classification: Average Delay per km during one hour peak period (Source: Transtools 2010)

<table>
<thead>
<tr>
<th>Country</th>
<th>1 to 5</th>
<th>5 to 10</th>
<th>10 to 20</th>
<th>Higher than 20</th>
<th>Higher than 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>48.2%</td>
<td>25.7%</td>
<td>11.1%</td>
<td>8.8%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Belgium</td>
<td>42.7%</td>
<td>35.1%</td>
<td>12.6%</td>
<td>6.4%</td>
<td>19.1%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>46.3%</td>
<td>32.0%</td>
<td>11.6%</td>
<td>6.4%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>44.5%</td>
<td>36.2%</td>
<td>9.6%</td>
<td>5.8%</td>
<td>15.3%</td>
</tr>
<tr>
<td>Germany</td>
<td>46.7%</td>
<td>36.8%</td>
<td>9.5%</td>
<td>4.3%</td>
<td>13.8%</td>
</tr>
<tr>
<td>Italy</td>
<td>50.7%</td>
<td>25.2%</td>
<td>7.9%</td>
<td>4.7%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Hungary</td>
<td>65.7%</td>
<td>19.0%</td>
<td>7.3%</td>
<td>4.1%</td>
<td>11.4%</td>
</tr>
<tr>
<td>Poland</td>
<td>60.8%</td>
<td>21.7%</td>
<td>6.4%</td>
<td>4.5%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>57.8%</td>
<td>26.6%</td>
<td>7.6%</td>
<td>2.6%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Ireland</td>
<td>61.8%</td>
<td>18.7%</td>
<td>5.2%</td>
<td>4.1%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>52.8%</td>
<td>28.0%</td>
<td>6.3%</td>
<td>2.5%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Austria</td>
<td>55.7%</td>
<td>28.4%</td>
<td>5.8%</td>
<td>2.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>France</td>
<td>61.1%</td>
<td>19.4%</td>
<td>5.3%</td>
<td>2.7%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Portugal</td>
<td>57.3%</td>
<td>21.0%</td>
<td>5.5%</td>
<td>2.3%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Denmark</td>
<td>62.8%</td>
<td>20.9%</td>
<td>5.2%</td>
<td>2.3%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Sweden</td>
<td>70.7%</td>
<td>13.6%</td>
<td>3.5%</td>
<td>1.5%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Spain</td>
<td>68.2%</td>
<td>16.8%</td>
<td>3.7%</td>
<td>1.2%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>78.6%</td>
<td>9.4%</td>
<td>1.9%</td>
<td>1.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Estonia</td>
<td>74.4%</td>
<td>8.3%</td>
<td>1.9%</td>
<td>1.2%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Finland</td>
<td>74.8%</td>
<td>13.4%</td>
<td>2.1%</td>
<td>0.8%</td>
<td>2.9%</td>
</tr>
</tbody>
</table>
Issue 3: Congestion - Cost

Mean Cost: 1% of the Growth Domestic Product – 111.3 B€
• Main issues:
 – 1/5 of trucks travelling around Europe are carrying nothing.
 – 20% of all truck journeys in the EU are run empty.

Waste of Fuel and money
Push Up carbon emission and air pollution

Final Energy Consumption
(source: European Union, 2011)
Issue 4 – Fleet Management -Distance

Road freight transport by distance class – Source: Eurostat, 2011
The main objective of road application are:

- **Safety Improvement:**
 - situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communications, enhancing the safety and comfort of the driver.
 - Improvement of emergency assistance
 - Insurance telematics: increase the fairness of motor insurance for both insurers and subscribers.

- **Carbon emission reduction**
 - Better usage of roads and vehicle thanks to Road User Charging
Road Application Challenges (2/2)

– **Regulation**
 - Better road traffic monitoring through collection of location data from vehicles through PNDs, IVS and mobile devices.

– **Fleet Management**
 - Better management through OBU.
 - Digital Tachograph for better control and Safety
 - Fuel and Maintenance Management

– **Innovation**
 - Connected Vehicles
 - Autonomous driving
Table of Content

- Road Traffic Management – Main Issues
- EGNOS/EDAS and Road User Charging
- Increasing Road Safety
- Improving Fleet Management and public transport
- EGNOS/EDAS for driver assistance
EGNOS/EDAS Added Values

• **Better Accuracy**
 – To localize vehicles and accidents (in particular in urban areas)

• **Better Reliability**
 – To trust the positionning and use it in complex systems

• **Integrity**
 – To detect problems quickly
Reducing Pollution

- **EGNOS/EDAS simplifies Road User Charging (RUC) system:**
 - **Definition:** Systems where the driver pays directly for use of a particular roadway or road network in a particular city, region or nation.
 - **Objective:**
 - To reduce pollution (limitation of roads usage)
 - To reduce rush hour peak and congestion
 - To finance roads infrastructures
 - To reduce noises due to traffic
RUC Existing projects in Europe

- Existing projects:
 - Germany
 - MAUT
 - ViaPass
 - Czech Republic
 - myto
 - HU-GO
 - Belgium
 - Hungary

[Logos of MAUT, myto, ViaPass, HU-GO]
Operating principle with DSRC tag

Taxation points with a DSRC beacon

Specific collection infrastructure

IT Systems

Archives

Truck with a DSRC tag
EGNOS for Road User Charging - Principles

Extract from "Egnos for Road" - GSA
Operation principle with satellite

Satellites

IT Systems

Archives

GPRS

None specific infrastructure

Taxation points by GNSS (& DSRC)

Truck with a GNSS receiver (& DSRC)
Points of taxation

Wrong taxation

Measured Trajectory

Real Trajectory

Point of Taxation

Taxable section

Collect point

TAXABLE SECTION
RUC Performance

EGNOS/EDAS reduces:
- Infrastructure
- Incorrect charging

and increase trust in the system.
EGNOS Performance

Absolute positioning error (All configuration) Absolute positioning error (Motorway Only)

Source: Inside GNSS, April 2011
Table of Content

- Road Traffic Management – Main Issues
- EGNOS/EDAS and Road User Charging
- Increasing Road Safety
- Improving Fleet Management and public transport
- EGNOS/EDAS for driver assistance
Safety Improvement – Example of Applications

EGNOS/EDAS provide better positioning to improve:

eCALLING
To know where the accident is.

ADAS – Advanced Driver Assistance Systems
To avoid collisions

PPUI - Pay-Per-Use Insurance
To localize vehicle
Example of ADAS: ERSEC Project (FP7)

• Collision Avoidance System Project leaded by EICAS
• Automatically deviates the vehicle trajectory just before an impending crash.
• **Objective:** Accuracy on the order of 0.1 meter at a sampling rate of 100 Hz.
• Intelligent data fusion of the EGNOS/GNSS sensor positioning measurement, the Road-GIS digital local map data and the measurement data obtained from an instrument set installed on board of the vehicle, including vehicle dynamic sensors and environmental sensors.
Table of Content

Road Traffic Management – Main Issues

EGNOS/EDAS and Road User Charging

Increasing Road Safety

Improving Fleet Management and public transport

EGNOS/EDAS for driver assistance
Fleet Management Improvement

DIGITAL TACHOGRAPH – DT
To providing reliable data to any ITS application

ROUTING
To optimize truck journeys

PREVENTIVE MAINTENANCE
To prevent breakdown by analysing truck usages

FUEL MANAGEMENT

16/06/2014
Example of Project: TACOT

- FP7 project granted in 2012 (End of Project: January 2014)
- TACOT: Trusted Multi Application Receiver for Trucks
- This project aimed to prepare the introduction and promote the use of EGNOS and Galileo in the road transportation industry through the realisation of a Trusted GNSS function to be used by the Digital Tachographs (DT)
- PVT reliability rely on multi sensor:
 - EGNOS/GALIELO, GPS and GLONASS
 - On Board Sensors (odometer, secure clock)
 - Other Sensors (time sources, accelerometer)
Architecture Overview

- Telecom Station
- Camera
- Accelometer
- CAN BUS
- T°
- Odometer
- Telecom Antenna
- GNSS Antenna
- Other Sensors
Fleet Management Improvement

LIVESTOCK

DANGEROUS GOODS

PERISHABLE GOODS
Eg. Cold Chain
• **SeCUring the EU GNSS adopTion in the dangeroUs Material transport:** European best practice for the operational adoption of commercial services based on EGNOS.

• Wide adoption of EGNOS in Europe for tracking & tracing of dangerous goods transported by road.

• 300 ENI trucks are equipped with GPS/EGNOS (OS and CS) tracking & tracing devices.
Reduce Congestion by traffic management

PERSONAL NAVIGATION DEVICE (PDA)

ROAD TRAFFIC MONITORING

ROUTING
Pay-Per-Use Insurance

• The costs of the insurance depends on the driven distance, the place, the time of driving and the behaviour of the driver.

• **Objective:** to differentiate and reward "safe" drivers, giving them lower premiums and/or a no-claims bonus.

• Some systems use GNSS signal (e.g. Metromile in US).

• Privacy concerns hinder the development of such systems.
Reduce Congestion by public transport management

PUBLIC TRANSPORTS

EMERGENCY VEHICLES

WASTE COLLECTION VEHICLES

STREET SWEEPERS
Table of Content

- Road Traffic Management – Main Issues
- EGNOS/EDAS and Road User Charging
- Increasing Road Safety
- Improving Fleet Management and public transport
- EGNOS/EDAS for driver assistance
• Connected Vehicle:
 – **Objective:** to provide situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communications, enhancing the safety and comfort of the driver.
• **Autonomous Driving:**

 – **Objective:** replace the driver to reduce traffic accident, improve traffic flow and driver comfort.

 – Coupling of several sensors allowing to identify the optimal path of action.

 – EGNOS/EDAS provides accurate and reliable position and speed.
Existing Technologies

Mercedes S-Class Sedan
- Active Lane Keeping Assist
- Active Blind Spot Assist
- BAS PLUS
- Pre-Safe Pedestrian Recognition
- Intelligent Drive

Audi Q7
- Presence City
- Exit warning assist
- Adaptive cruise control with Stop & Go and Traffic Jam assist
Existing Technologies

- **Tesla Model S - Autopilot**

Source: Tesla web site
Google Self-Driving Car

- HW: LIDAR, Cameras, Radar, Odometers and GPS.
- Used preprocessed journeys data

New Cadillac

- To be released in 2017
- Advanced cruised control on highways
EGNOS – Driver Assistance

Extract from "Egnos for Road" - GSA
Conclusions

• Intelligent transport systems for road transport represent an important segment of the GNSS market.

• EGNOS/EDAS signals allows to enhance existing application and to create new application to settle down the main issues dealing with road management.

• Using GALILEO signals, the performance of new application will be even higher.